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ABSTRACT

This is the fifth paper in a series in which we construct and study the so-called Runge-

Kutta Discontinuous Galerkin method for numerically solving hyperbolic conservation laws.

In this paper, we extend the method to multidimensional nonlinear systems of conservation

laws. The algorithms are described and discussed, including algorithm formulation and

practical implementation issues such as the numerical fluxes, quadrature rules, degrees of

freedom, and the slope limiters, both in the triangular and the rectangular element cases.

Numerical experiments for two dimensional Euler equations of compressible gas dynamics

are presented that show the effect of the (formal) order of accuracy and the use of triangles

or rectangles, on the quality of the approximation.
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1 Introduction

This is the fifth article of a series [13, 14, 15, 16] devoted to the construction and study of

the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method. The RKDG method

is a method devised to numerically solve the initial boundary value problem associated with

the conservation law

∂tu+ div f(u) = 0, in Ω× (0, T ), (1.1)

where Ω ⊂ Rd and u = (u1, ..., um)t, which is assumed to be hyperbolic, that is, f(u)

is assumed to be such that any real combination of the Jacobians
∑d

i=1 ξi
∂fi

∂u
has m real

eigenvalues and a complete set of eigenvectors. In this paper, we continue our work in

[13, 14, 15, 16] and extend (and improve) the RKDG method to the case of multidimensional

systems. To place this paper under a proper perspective, we first discuss the work done in

this series of papers and papers by other authors which has been prompted by the remarkable

compactness and parallelizability of the RKDG method and by its ability to easily handle

boundary conditions and complicated geometry.

The original discontinuous Galerkin method was introduced by Reed and Hill [31], and

analyzed by LeSaint and Raviart [26], Johnson and Pitkaränta [25], Richter [32], and by Pe-

terson [29]. All these were for the linear equations. Our work was concentrated on treating

nonlinear equations, which call for different techniques. The first (one-dimensional) RKDG

method was introduced in [13] by combining the piecewise-linear discontinuous finite ele-

ments used for the space discretization of one-dimensional conservation laws by Chavent

and Cockburn [11] with one of the explicit, TVD time discretizations developed by Shu [34],

and Shu and Osher [35, 36]. The resulting scheme was shown to be formally uniformly

second-order accurate (a fact confirmed by numerical experiments) and was proven to be

total variation diminishing in the means (TVDM). Later, in [14], the RKDG schemes were

defined using a general framework that allowed piecewise polynomials of degree k ∈ N

approximate solutions. These fully explicit schemes were proven to be TVBM (total vari-
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ation bounded in the means) and were shown to be formally uniformly (k + 1)-th order

accurate, facts that were both verified numerically. The extension of the RKDG schemes

to one-dimensional systems was carried out in [15] and the multidimensional case for the

scalar conservation law was treated in [16], where it was proven that for some fairly gen-

eral triangulations, the approximate solution given by the RKDG method satisfies a local

maximum principle independently of the the degree k. A projection, or generalized “slope

limiting”, was constructed which enforced the above maximum principle without destroying

the formal accuracy of the method. Theoretical indications that the method is uniformly

(k + 1)-th order-accurate when polynomials of degree k are used were given and numerical

validation of this claim was presented for piecewise-linear approximations k = 1 in uniform

grids made of triangles. The case k = 2 was worked out by Hou [23]. An extension of the

RKDG method to the two-dimensional Euler equations of gas dynamics was carried out in

[17]; piecewise-linear approximations were used. In this paper, we complete and improve the

work started in [17].

In related work, Atkins and Shu [1] studied an alternative quadrature-free implementation

of the RKDG method. Bey and Oden [8] used the RKDG method with arbitrary quadrilat-

erals and piecewise-linear approximate solutions, to solve 2D Euler equations. Jiang and Shu

[24] proved a cell entropy inequality for the square entropy for arbitrary order of accuracy

and arbitrary triangulations, without using the nonlinear limiters, for the semidiscrete (con-

tinuous in time) case. This also implied the L2 stability of the method for nonlinear shocked

cases. Lowrie, Roe and van Leer [27] studied the discontinuous Galerkin method in space

and time; see also the related studies previously made by Bar-Yoseph [2] and Bar-Yoseph

and Elata [3].

The important issue of the parallelizability of the RKDG method has been explored by

several authors. Biswas, Devine, and Flaherty [9] have shown that the RKDG method (with

a new, interesting limiter) has a “solution parallel efficiency” of 99 % in the NCUBE/2–

a reflection of the fact that the RKDG method uses only the information of immediate
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neighbors to march in time. These authors have also constructed h- and p-adaptive versions

of the RKDG method with remarkable results; see also the application to the Euler equation

of gas dynamics by deCougny et al. [19]. The important issue of “dynamic load balancing,”

essential for adaptive methods, has been addressed by Devine et al. [21], by Özturan et al.

[28], and by Devine et al. [20].

The effect of the quality of the approximation of curved boundaries on the quality of the

approximate solution has been explored in a recent paper by Bassi and Rebay [4]; in this

paper, we only consider computational domains with Lipschitz boundaries.

Extensions of the method to the compressible Navier Stokes equations and general con-

vection diffusion equations can be found in Bassi and Rebay [5] and Cockburn and Shu [18],

respectively.

We are now ready to give a detailed description of the contents of this paper. In Section 2,

we give a general formulation of the RKDG method for multidimensional systems, including

the discussion on slope limiters. Section 3 contains the algorithm and implementation details,

including the numerical fluxes, quadrature rules, degrees of freedom, and slope limiters of

the RKDG method for both piecewise-linear and piecewise-quadratic approximations in both

triangular and rectangular elements. In Section 4, we present several test problems for the

two-dimensional Euler equations of gas dynamics intended to illustrate the effect of the

degree k and the effect of the use of triangles or rectangles on the accuracy of the method.

Concluding remarks are given in Section 5.

2 Algorithm formulation

To define the RKDG method, we proceed as in [16].

2.1 Space discretization

First, we discretize (1.1) in space using the discontinuous Galerkin method. For each time t ∈

[0, T ], the approximate solution uh(t) is sought in the finite element space of discontinuous
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functions

Vh = {vh ∈ L∞(Ω) : vh |K ∈ V (K), ∀K ∈ Th }, (2.1)

where Th is a triangulation of the domain Ω and V (K) is the so-called local space. In this

paper, V (K) is taken to be P k, the collection of polynomials of degree k, for k = 1 and 2.

To determine the approximate solution uh(t), we need the weak formulation of (1.1):

d

dt

∫
K
u(x, t) v(x) dx+

∑
e∈∂K

∫
e
f(u(x, t)) · ne,K v(x) dΓ−

∫
K

f(u(x, t)) · grad v(x) dx = 0,

for any smooth function v(x). Here ne,K denotes the outward unit normal to the edge e.

We replace the integrals by quadrature rules as follows

∫
e
f(u(x, t)) · ne,K vh(x) dΓ ≈

L∑
l=1

ωl f(u(xel, t)) · ne,K v(xel)|e|, (2.2)

∫
K

f(u(x, t)) · grad v(x) dx ≈
M∑

j=1

ωj f(u(xKj, t)) · grad v(xKj)|K|. (2.3)

Then, the flux f(u(x, t)) ·ne,K is replaced by the numerical flux he,K(x, t), the exact solution

u is replaced by the approximate solution uh, and the test function v by vh ∈ V (K), resulting

in the following scheme:

uh(t = 0) = PVh
(u0),

d

dt

∫
K
uh(x, t)vh(x)dx+

∑
e∈∂K

L∑
l=1

ωl he,K(xel, t) v(xel)|e|

−
M∑

j=1

ωj f(uh(xKj, t)) · grad vh(xKj)|K| = 0, ∀vh ∈ V (K), ∀K ∈ Th. (2.4)

The operator PVh
is, for example, the standard L2-projection into the finite element space

Vh.

The value of the numerical flux at the point (x, t), he,K(x, t), where x belongs to the edge

e of the boundary of the element K, depends on the two values of the approximate solution

at (x, t). One is the value obtained from the interior of the element K, namely,

uh(x
int(K), t) = lim

y→x, y∈K
uh(y, t),
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and the other is the value obtained from the exterior of the element K, namely,

uh(x
ext(K), t) =

{
γh(x, t), if x ∈ ∂Ω,
limy→x, y 6∈K uh(y, t), otherwise.

The discrete boundary values, γh, are the L2-projection of the exact boundary data γ into

the finite element space obtained by taking the traces of the elements of Vh into ∂Ω.

The numerical flux is defined as he,K(x, t) = he,K(uh(x
int(K), t), uh(x

ext(K), t)) where he,K

is any two–point Lipschitz flux, which is monotone in the scalar case and is an exact or

approximate Riemann solver in the system case. It is also consistent with f(u) · ne,K , that

is,

he,K(u, u) = f(u) · ne,K ,

and conservative, that is,

he,K(uh(x
int(K)), uh(x

ext(K))) + he,K′(uh(x
int(K ′)), uh(x

ext(K′))) = 0, K ′ ∩K = e.

An example is the following (local) Lax-Friedrichs flux

he,K(a, b) =
1

2
[ f(a) · ne,K + f(b) · ne,K − αe,K (b− a) ] , (2.5)

where αe,K is an estimate of the biggest eigenvalue of the Jacobian ∂
∂u

f(uh(x, t)) · ne,K for

(x, t) in a neighborhood of the edge e.

It is convenient to take the local spaces V (K) to be the space of polynomials of total

degree smaller or equal to k, P k(K); in this case, we denote Vh by V k
h . (Note that this

choice is possible regardless of the shape of the elements K since the functions in Vh are

discontinuous.) There are two reasons for this choice. First, if the local space V (K) includes

P k(K), it is possible to find (k+1)-th order accurate approximations in V (K) to any function

in W 1,k+1(K). Second, if V (K) consists of polynomials only and does not include P k+1(K),

it is not possible to find (k + 2)-th order accurate approximations in V (K) to functions in

W 1,k+2(K); see [12].

Moreover, if Vh includes V k
h , the approximation to divf(u) provided by the above space

discretization is (k + 1)-th accurate for sufficiently smooth u, provided that the quadrature
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rules for the edges of the elements, (2.2), are exact for polynomials of degree 2k+1, and the

quadrature rules for the interior of the elements, (2.3), are exact for polynomials of degree

2k, see [16], Proposition 2.1. It is thus reasonable to expect that the resulting scheme gives

an (k + 1)-th order accurate approximation when the exact solution is smooth enough.

For the choice Vh = V 0
h and quadrature rules over the edges exact for constants, the

resulting scheme is nothing but a finite volume, monotone scheme in the scalar case. Thus,

the discretization by the Discontinuous Galerkin method can be considered as a high-order

accurate extension of finite volume, monotone schemes.

2.2 Time discretization

The equations defining the approximate solution can be rewritten in ODE form as d
dt
uh =

Lh(uh, γh) after inverting the “mass” matrix. Since the functions of Vh are discontinuous, the

“mass” matrix is block-diagonal and the blocks, whose orders are equal to the dimensions

of the local spaces V (K), can be easily inverted by hand. If a locally orthogonal basis is

chosen, the mass matrix is diagonal.

If we are using a finite element space Vh included in V k
h , we would like to discretize in

time the above system of ODEs with a method that is at least (k + 1)-th order accurate.

To do that, we use the TVD Runge Kutta time discretization introduced in [34, 35]. Thus,

if {tn}N
n=0 is a partition of [0, T ] and ∆tn = tn+1 − tn, n = 0, ..., N − 1, our time-marching

algorithm reads as follows:

• Set u0
h = PVh

(u0);

• For n = 0, ..., N − 1 compute un+1
h as follows:

1. set u
(0)
h = un

h;

2. for i = 1, ..., k + 1 compute the intermediate functions:

u
(i)
h =

{
i−1∑
l=0

αilu
(l)
h + βil∆t

nLh(u
(l)
h , γh(t

n + dl∆t
n))

}
;
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3. set un+1
h = u

(k+1)
h .

Note that this method is very easy to code since only a subroutine defining Lh(uh, γh(t))

is needed. In this paper, we use the second order and third order accurate Runge-Kutta time

discretizations listed below in Table 2.1, for piecewise linear P 1 and piecewise quadratic P 2

finite element approximations, respectively.

Table 2.1

Parameters of some practical Runge-Kutta time discretizations

order αil βil dl max{βil/αil}

2 1 1 0 1
1
2

1
2

0 1
2

1

1 1 0

3 3
4

1
4

0 1
4

1 1
1
3

0 2
3

0 0 2
3

1
2

2.3 The local slope limiting

In the case in which piecewise-constant approximations are considered, that is, when Vh =

V 0
h , the artificial viscosity that the numerical flux introduces in the scheme, due to upwind-

ing, is enough to render the scheme stable. However, when the local spaces are richer, the

stabilizing influence of the numerical fluxes is not enough to guarantee the absence of spu-

rious oscillations. To enhance the stability of the method and eliminate possible spurious

oscillations in the approximate solution, a local slope limiting operator ΛΠh is introduced in

the time-marching algorithm as follows:

• Set u0
h = ΛΠh PVh

(u0);

• For n = 0, ..., N − 1 compute un+1
h as follows:

1. set u
(0)
h = un

h;
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2. for i = 1, ..., k + 1 compute the intermediate functions:

u
(i)
h = ΛΠh

{
i−1∑
l=0

αilu
(l)
h + βil∆t

nLh(u
(l)
h , γh(t

n + dl∆t
n))

}
;

3. set un+1
h = u

(k+1)
h .

Theoretical studies of the operator ΛΠh can be found in [14] for the one dimensional case,

and in [16] for the multidimensional case. Guided by these results, we use in this paper very

simple, practical, and effective slope limiting operators ΛΠh. To compute ΛΠhuh, we rely on

the assumption that spurious oscillations are present in uh only if they are present in its P 1

part u1
h, which is its L2-projection into the space of piecewise linear functions V 1

h . Thus, if

they are not present in u1
h, i.e., if

u1
h = ΛΠh u

1
h,

then we assume that they are not present in uh and hence do not do any limiting:

ΛΠh uh = uh .

On the other hand, if spurious oscillations are present in the P 1 part of the solution u1
h, i.e.,

if

u1
h 6= ΛΠh u

1
h,

then we chop off the higher order part of the numerical solution, and limit the remaining P 1

part:

ΛΠh uh = ΛΠh u
1
h.

In this way, in order to define ΛΠh for arbitrary space Vh, we only need to actually define it

for piecewise linear functions V 1
h . The exact way to do that, both for the triangular elements

and for the rectangular elements, will be discussed in the next section.

3 Algorithm and implementation details

In this section we give the algorithm and implementation details, including numerical fluxes,

quadrature rules, degrees of freedom, fluxes, and limiters of the RKDG method for both
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piecewise-linear and piecewise-quadratic approximations in both triangular and rectangular

elements.

3.1 Fluxes

For the numerical flux needed in (2.4), we use the simple Lax-Friedrichs flux (2.5):

he,K(a, b) =
1

2
[ f(a) · ne,K + f(b) · ne,K − αe,K (b− a) ] .

The numerical viscosity constant αe,K should be an estimate of the biggest eigenvalue of the

Jacobian ∂
∂u

f(uh(x, t)) · ne,K for (x, t) in a neighborhood of the edge e. For the triangular

elements, we have used the local Lax-Friedrichs recipe:

• Take αe,K to be the larger one of the largest eigenvalue (in absolute value) of ∂
∂u

f(ūK) ·

ne,K and that of ∂
∂u

f(ūK ′) · ne,K , where ūK and ūK ′ are the means of the numerical

solution in the elements K and K ′ sharing the edge e.

For the rectangular elements, we have used both the local Lax-Friedrichs recipe (in Ex-

amples 4.1 and 4.2) and the global Lax-Friedrichs recipe (in Example 4.3):

• Take αe,K to be the largest of the largest eigenvalue (in absolute value) of ∂
∂u

f(ūK ′′)·ne,K ,

where ūK ′′ is the mean of the numerical solution in the element K ′′, which runs over

all elements on the same line (horizontally or vertically, depending on the direction of

ne,K) with K and K ′ sharing the edge e.

Usually, the global Lax-Friedrichs recipe is more dissipative, but is more robust, than

the local Lax-Friedrichs recipe, especially for problems involving low velocities and low den-

sity/pressure near wall boundaries. There are recipes in between the two, such as taking the

maximum over several neighboring elements in obtaining αe,K , but we have not used them

in this paper.
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3.2 Quadrature rules

According to the analysis, the quadrature rules for the edges of the elements, (2.2), must

be exact for polynomials of degree 2k + 1, and the quadrature rules for the interior of the

elements, (2.3), must be exact for polynomials of degree 2k, if P k methods are used. Here we

discuss the quadrature points used for P 1 and P 2 in the triangular and rectangular element

cases.

3.2.1 The rectangular elements

For the edge integral, we use the following two point Gaussian rule

∫ 1

−1
g(x)dx ≈ g

(
− 1√

3

)
+ g

(
1√
3

)
, (3.1)

for the P 1 case, and the following three point Gaussian rule

∫ 1

−1
g(x)dx ≈ 5

9

[
g
(
−3

5

)
+ g

(
3

5

)]
+

8

9
g(0) , (3.2)

for the P 2 case, suitably scaled to the relevant intervals.

For the interior of the elements, we could use a tensor product of (3.1), with 4 quadrature

points, for the P 1 case. But to save cost, we “recycle” the values of the fluxes at the element

boundaries, and only add one new quadrature point in the middle of the element. The

quadrature rule is thus:

∫ 1

−1

∫ 1

−1
g(x, y)dxdy ≈ 1

4

[
g

(
−1,

1√
3

)
+ g

(
−1,− 1√

3

)
+ g

(
− 1√

3
,−1

)
+ g

(
1√
3
,−1

)

+g

(
1,− 1√

3

)
+ g

(
1,

1√
3

)
+ g

(
1√
3
, 1

)
+ g

(
− 1√

3
, 1

)]
+ 2 g(0, 0).

For the P 2 case, we use a tensor product of (3.2), with 9 quadrature points.

3.2.2 The triangular elements

For the edge integral, we use the same two point or three point Gaussian quadratures as in

the rectangular case, (3.1) and (3.2), for the P 1 and P 2 cases, respectively.
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For the interior integrals (2.3), we use the three mid-point rule

∫
K
g(x, y)dxdy ≈ |K|

3

3∑
i=1

g(mi) ,

where mi are the mid-points of the edges, for the P 1 case. For the P 2 case, we use a 7 point

quadrature rule which is exact for polynomials of degree 5 over triangles, given in Table A.4,

on page 343 of [10].

3.3 Basis and degrees of freedom

We emphasize that the choice of basis and degrees of freedom does not affect the algorithm,

as it is completely determined by the choice of function space V (h) in (2.1), the numerical

fluxes in (2.4), the quadrature rules, the slope limiting, and the time discretization. However,

a suitable choice of basis and degrees of freedom may simplify the implementation and

calculation.

3.3.1 The rectangular elements

For the P 1 case, we use the following expression for the approximate solution uh(x, y, t)

inside the rectangular element [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
]:

uh(x, y, t) = ū(t) + ux(t)φi(x) + uy(t)ψj(y) (3.3)

where

φi(x) =
x− xi

∆xi/2
, ψj(y) =

y − yj

∆yj/2
, (3.4)

and

∆xi = xi+ 1
2
− xi− 1

2
, ∆yj = yj+ 1

2
− yj− 1

2
.

The degrees of freedoms, to be evolved in time, are then

ū(t), ux(t), uy(t).

Here we have omitted the subscripts ij these degrees of freedom should have, to indicate

that they belong to the element ij which is [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
].
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Notice that the basis functions

1, φi(x), ψj(y),

are orthogonal, hence the local mass matrix is diagonal:

M = ∆xi∆yj diag
(
1,

1

3
,
1

3

)
.

For the P 2 case, the expression for the approximate solution uh(x, y, t) inside the rectan-

gular element [xi− 1
2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] is:

uh(x, y, t) = ū(t) + ux(t)φi(x) + uy(t)ψj(y) + uxy(t)φi(x)ψj(y)

+uxx(t)
(
φ2

i (x)−
1

3

)
+ uyy(t)

(
ψ2

j (y)−
1

3

)
, (3.5)

where φi(x) and ψj(y) are defined by (3.4). The degrees of freedoms, to be evolved in time,

are

ū(t), ux(t), uy(t), uxy(t), uxx(t), uyy(t).

Again the basis functions

1, φi(x), ψj(y), φi(x)ψj(y), φ
2
i (x)−

1

3
, ψ2

j (y)−
1

3
,

are orthogonal, hence the local mass matrix is diagonal:

M = ∆xi∆yj diag
(
1,

1

3
,
1

3
,
1

9
,

4

45
,

4

45

)
.

3.3.2 The triangular elements

For the P 1 case, we use the following expression for the approximate solution uh(x, y, t)

inside the triangle K:

uh(x, y, t) =
3∑

i=1

ui(t)ϕi(x, y)

where the degrees of freedom ui(t) are values of the numerical solution at the midpoints of

edges, and the basis function ϕi(x, y) is the linear function which takes the value 1 at the
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mid-point mi of the i-th edge, and the value 0 at the mid-points of the two other edges. The

mass matrix is diagonal

M = |K|diag
(

1

3
,
1

3
,
1

3

)
.

For the P 2 case, we use the following expression for the approximate solution uh(x, y, t)

inside the triangle K:

uh(x, y, t) =
6∑

i=1

ui(t)ξi(x, y)

where the degrees of freedom, ui(t), are values of the numerical solution at the three mid-

points of edges and the three vertices. The basis function ξi(x, y), is the quadratic function

which takes the value 1 at the point i of the six points mentioned above (the three midpoints

of edges and the three vertices), and the value 0 at the remaining five points. The mass

matrix this time is not diagonal.

3.4 Limiting

We construct slope limiting operators ΛΠh on piecewise linear functions uh in such a way

that the following properties are satisfied:

1. Accuracy: if uh is linear then ΛΠh uh = uh.

2. Conservation of mass: for every element K of the triangulation Th, we have:

∫
K

ΛΠh uh =
∫

K
uh.

3. Slope limiting: on each element K of Th, the gradient of ΛΠh uh is not bigger than

that of uh.

The actual form of the slope limiting operators is closely related to that of the slope

limiting operators studied in [14] and [16].
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3.4.1 The rectangular elements

The limiting is performed on ux and uy in (3.3), using the differences of the means. For a

scalar equation, ux would be limited (replaced) by

m̄ (ux, ūi+1,j − ūij, ūij − ūi−1,j) (3.6)

where the function m̄ is the TVB corrected minmod function [33, 14] defined by

m̄ (a1, ..., am) =

{
a1, if |a1| ≤M∆x2;
m(a1, ..., am), otherwise

(3.7)

with the minmod function m defined by

m(a1, ..., am) =

{
s mini |ai|, if s = sign(a1) = ... = sign(am);
0, otherwise

The TVB correction is needed to avoid unnecessary limiting near smooth extrema, where the

quantity ux or uy is on the order of O(∆x2) or O(∆y2). For an estimate of the TVB constant

M in terms of the second derivatives of the function, see [14]. Usually, the numerical results

are not sensitive to the choice of M in a large range. In all the calculations in this paper we

take M to be 50.

Similarly, uy is limited (replaced) by

m̄(uy, ūi,j+1 − ūij, ūij − ūi,j−1).

with a change of ∆x to ∆y in (3.7).

For systems, we perform the limiting in the local characteristic variables. To limit the

vector ux in the element ij, we proceed as follows:

• Find the matrix R and its inverse R−1, which diagonalize the Jacobian evaluated at

the mean in the element ij in the x-direction:

R−1 ∂f1(ūij)

∂u
R = Λ ,

where Λ is a diagonal matrix containing the eigenvalues of the Jacobian. Notice that

the columns of R are the right eigenvectors of
∂f1(ūij)

∂u
and the rows of R−1 are the left

eigenvectors.
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Figure 3.1: Illustration of limiting.

• Transform all quantities needed for limiting, i.e., the three vectors uxij, ūi+1,j− ūij and

ūij − ūi−1,j, to the characteristic fields. This is achieved by left multiplying these three

vectors by R−1.

• Apply the scalar limiter (3.6) to each of the components of the transformed vectors.

• The result is transformed back to the original space by left multiplying R on the left.

3.4.2 The triangular elements

To construct the slope limiting operators for triangular elements, we proceed as follows. We

start by making a simple observation. Consider the triangles in Figure 3.1, where m1 is the

mid-point of the edge on the boundary of K0 and bi denotes the barycenter of the triangle

Ki for i = 0, 1, 2, 3.

Since we have that

m1 − b0 = α1 (b1 − b0) + α2 (b2 − b0),

for some nonnegative coefficients α1, α2 which depend only on m1 and the geometry, we can

write, for any linear function uh,

uh(m1)− uh(b0) = α1 (uh(b1)− uh(b0)) + α2 (uh(b2)− uh(b0)),

15



and since

ūKi
=

1

|Ki|

∫
Ki

uh = uh(bi), i = 0, 1, 2, 3,

we have that

ũh(m1, K0) ≡ uh(m1)− ūK0 = α1 (ūK1 − ūK0) + α2 (ūK2 − ūK0) ≡ ∆ū(m1, K0)

Now, we are ready to describe the slope limiting. Let us consider a piecewise linear function

uh, and let mi, i = 1, 2, 3 be the three mid-points of the edges of the triangle K0. We then

can write, for (x, y) ∈ K0,

uh(x, y) =
3∑

i=1

uh(mi)ϕi(x, y) = ūK0 +
3∑

i=1

ũh(mi, K0)ϕi(x, y).

To compute ΛΠhuh, we first compute the quantities

∆i = m̄(ũh(mi, K0), ν∆ū(mi, K0)),

where m̄ is the TVB modified minmod function defined in (3.7), and ν > 1. We take ν = 1.5

in our numerical runs. Then, if
∑3

i=1 ∆i = 0, we simply set

ΛΠhuh(x, y) = ūK0 +
3∑

i=1

∆i ϕi(x, y).

If
∑3

i=1 ∆i 6= 0, we compute

pos =
3∑

i=1

max(0,∆i), neg =
3∑

i=1

max(0,−∆i),

and set

θ+ = min

(
1,
neg

pos

)
, θ− = min

(
1,
pos

neg

)
.

Then, we define

ΛΠhuh(x, y) = ūK0 +
3∑

i=1

∆̂i ϕi(x, y),

where

∆̂i = θ+ max(0,∆i)− θ− max(0,−∆i).
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It is very easy to see that this slope limiting operator satisfies the three properties listed

above.

For systems, we perform the limiting in the local characteristic variables. To limit ∆i, we

proceed as in the rectangular case, the only difference being that we work with the following

Jacobian

∂

∂u
f(ūK0) ·

mi − b0
|mi − b0|

.

4 Numerical Results

In this section we present several numerical results obtained with the P 1 and P 2 (second

and third order accurate) RKDG methods with either rectangular or triangular elements.

These are standard test problems for Euler equations of compressible gas dynamics.

Example 4.1. Double Mach reflection of a strong shock. This problem was studied exten-

sively in Woodward and Colella [37] and later by many others. We use exactly the same

setup as in [37], namely, a Mach 10 shock initially making a 60◦ angle with a reflecting wall.

The undisturbed air ahead of the shock has a density of 1.4 and a pressure of 1.

We use rectangular elements for this problem. The computational domain is [0, 4]× [0, 1],

as in [37]. The reflecting wall lies at the bottom of the computational domain for 1
6
≤ x ≤ 4.

Initially a right-moving Mach 10 shock is positioned at x = 1
6
, y = 0 and makes a 60◦ angle

with the x-axis. For the bottom boundary, the exact post-shock condition is imposed for

the part from x = 0 to x = 1
6
, to mimic an angled wedge. Reflective boundary condition is

used for the rest. At the top boundary of our computational domain, the flow values are set

to describe the exact motion of the Mach 10 shock. Inflow/outflow boundary conditions are

used for the left and right boundaries. The results at t = 0.2 are shown. As in [37], only the

results in [0, 3]× [0, 1] are displayed.

Four different uniform meshes are used: 240 × 60 elements (∆x = ∆y = 1
60

); 480 × 120

elements (∆x = ∆y = 1
120

); 960× 240 elements (∆x = ∆y = 1
240

); and 1920× 480 elements

(∆x = ∆y = 1
480

). The density is plotted in Figure 4.1 for the P 1 case and in Figure 4.2

17



for the P 2 case. In all the plots, we use 30 contours equally distributed from ρ = 1.3965 to

ρ = 22.682.

It is not easy to observe any significant difference between the P 1 and P 2 results in these

pictures. However, if we show a “blowed up” portion around the double Mach region, in

Figure 4.3, we can see that P 2 with ∆x = ∆y = 1
240

has qualitatively the same resolution

as P 1 with ∆x = ∆y = 1
480

for the fine details of the complicated structure in this region.

Notice that this detailed structure is of physical interest and was studied before with an

adaptive grid calculation in [7]. P 2 with ∆x = ∆y = 1
480

gives a much better resolution for

these structures than P 1 with the same number of elements.

The conclusion here is that, if one is interested in such fine structures, then one can use

the third order scheme P 2 with only half of the mesh points in each direction as in P 1. This

translates to a reduction of a factor of 8 in space-time cells for 2D time dependent problems,

and will more than off-set the increase of cost per cell and the smaller CFL number by using

the higher order P 2 method (the cpu saving for this problem is around a factor of 2.1 in our

implementation). This saving will be even more significant for 3D.

The optimal strategy, of course, is to use adaptivity and concentrate cells around the

interesting region, and/or change the order of the scheme in different regions.

Example 4.2. Flow past a forward facing step. This problem was again studied extensively

in Woodward and Colella [37] and later by many others. The setup of the problem is the

following: a right going Mach 3 uniform flow enters a wind tunnel of 1 unit wide and 3

units long. The step is 0.2 units high and is located 0.6 units from the left-hand end of

the tunnel. The problem is initialized by a uniform, right-going Mach 3 flow. Reflective

boundary conditions are applied along the walls of the tunnel and in-flow and out-flow

boundary conditions are applied at the entrance (left-hand end) and the exit (right-hand

end), respectively. The results at t = 4 are shown.

The corner of the step is a singularity, which we study carefully in our numerical experi-

ments. Unlike in [37] and in many other papers, we do not modify our scheme near the corner
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Figure 4.1: Double Mach reflection problem. Second order P 1 results. Density ρ. 30 equally
spaced contour lines from ρ = 1.3965 to ρ = 22.682. Mesh refinement study. From top to
bottom: ∆x = ∆y = 1

60
, 1

120
, 1

240
, and 1

480
.

19



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P2, ∆ x = ∆ y = 1/60

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P2, ∆ x = ∆ y = 1/120

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P2, ∆ x = ∆ y = 1/240

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

Rectangles P2, ∆ x = ∆ y = 1/480

Figure 4.2: Double Mach reflection problem. Third order P 2 results. Density ρ. 30 equally
spaced contour lines from ρ = 1.3965 to ρ = 22.682. Mesh refinement study. From top to
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in any way. It is well known that this leads to an erroneous entropy layer at the downstream

bottom wall, as well as a spurious Mach stem at the bottom wall. However, these artifacts

decrease when the mesh is refined. In Figure 4.4, second order P 1 results using rectangular

elements are shown, for a mesh refinement study using ∆x = ∆y = 1
40

, 1
80

, 1
160

, and 1
320

as

element sizes. We can clearly see the improved resolution (especially at the upper slip line

from the triple point) and decreased artifacts caused by the corner, with decreased element

sizes. In Figure 4.5, third order P 2 results using the same sequence of elements are shown.

Comparing with the P 1 results in Figure 4.4, we can see that the resolution is improved,

especially for the slip line issued from the triple point.

In order to verify that the erroneous entropy layer at the downstream bottom wall and the

spurious Mach stem at the bottom wall are both artifacts caused by the poor resolution of

the corner singularity, we use our triangle code to locally refine near the corner progressively.

A sequence of such triangulation is shown in Figure 4.6, where σ is the ratio between the

typical size of the triangles near the corner and that elsewhere. The resolution of the meshes

away from the corner is roughly equal to a rectangular element case of ∆x = ∆y = 1
40

, i.e.,

the top pictures in Figures 4.4 and 4.5. The density results using P 1 and these triangulations

are shown in Figure 4.7, those using P 2 are shown in Figure 4.8. We can see that, with more

triangles concentrated near the corner, the artifacts gradually decrease. Notice that there is

a strong spurious entropy production near the corner, which pollutes the flow downstream.

This is more apparent when the entropy is plotted (pictures not shown to save space). With

progressive refinement near the corner, this spurious entropy production decreases.

These are the only triangular element runs we present in this paper. We can see that

the triangular elements can give results of the same resolution quality as the rectangular

case, with roughly the same mesh density, for both P 1 and P 2. We do observe, however,

that a positivity correction procedure is needed for the triangular element runs for this case.

During the projection of the linear part, we check whether the density and the total energy

are negative at the three mid-points of the edges of K. If they are, further limiting is
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performed to bring them to 10−10 in a conservative way.

Example 4.3. Shock passing a backward facing corner (diffraction). This example has been

used in [22] and [30], see also the experimental results in [6]. The setup of the problem is the

following: the computational domain is the union of [0, 1] × [6, 11] and [1, 13]× [0, 11]; the

initial condition is a pure right moving shock of Mach = 5.09, initially located at x = 0.5

and 6 ≤ y ≤ 11, moving into an undisturbed air ahead of the shock with a density of 1.4

and a pressure of 1. The boundary conditions are inflow at x = 0, 6 ≤ y ≤ 11, outflow at

x = 13, 0 ≤ y ≤ 11, reflective at 0 ≤ x ≤ 1, y = 6 and at x = 1, 0 ≤ y ≤ 6, and Neumann

at 1 ≤ x ≤ 13, y = 0 and at 0 ≤ x ≤ 13, y = 11. No special treatment is done at the corner

which is a singularity of the solution. The density at t = 2.3 is presented in Figure 4.9 for

the P 1 case and in Figure 4.10 for the P 2 case. Rectangular meshes are used, with four

different mesh sizes ∆x = ∆y = 1
10

, 1
20

, 1
40

, and 1
80

, respectively.

We remark that it is easy to get negative density and/or pressure for this problem. In

both our P 1 and P 2 runs, we found it necessary to perform a positivity correction procedure.

For the P 1 case, we check, for each element, whether the density, as a linear function, is

too close to zero in the element. Specifically, using the notation of (3.3), we check if

ū− |ux| − |uy| <
1

2
ū,

and, if yes, the slopes ux and uy are reduced by a factor

factor =
1

2

ū

|ux|+ |uy|
.

The same correction procedure is performed on the total energy. We do not modify the two

momenta.

For the P 2 case, a somewhat stronger positivity correction procedure is needed. We

check, for each element, whether the density or the total energy is too close to zero. Using

the notation of (3.5), we check if

ū− |ux| − |uy| − |uxy| −
2

3
(|uxx|+ |uyy|) < 0 ,
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Figure 4.4: Forward facing step problem. Second order P 1 results. Density ρ. 30 equally
spaced contour lines from ρ = 0.090338 to ρ = 6.2365. Mesh refinement study. From top to
bottom: ∆x = ∆y = 1
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Figure 4.5: Forward facing step problem. Third order P 2 results. Density ρ. 30 equally
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Figure 4.6: Forward facing step problem. The triangulations used for results in Figures 4.7
and 4.8. σ is the ratio between the typical size of the triangles near the corner and that
elsewhere.
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Figure 4.7: Forward facing step problem. Second order P 1 results. Density ρ. 30 equally
spaced contour lines from ρ = 0.090338 to ρ = 6.2365. Triangle code. Progressive refinement
near the corner, using the triangulations shown in Figure 4.6.
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Figure 4.8: Forward facing step problem. Third order P 2 results. Density ρ. 30 equally
spaced contour lines from ρ = 0.090338 to ρ = 6.2365. Triangle code. Progressive refinement
near the corner, using the triangulations shown in Figure 4.6.
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for either the density or the total energy, and, if yes, all the degrees of freedom except the

mean

ux, uy, uxy, uxx, uyy,

of all the components (density, two momenta, and total energy), are reduced by a factor,

which is the smaller of the two quantities

ū

|ux|+ |uy|+ |uxy|+ 2
3
(|uxx|+ |uyy|)

,

computed from the density and the total energy.

We remark that the positivity correction procedures described above are conservative

and do not degrade the formal accuracy of the schemes.

5 Concluding Remarks

We have presented the algorithm formulation and practical implementation issues of the

RKDG (Runge-Kutta discontinuous Galerkin) methods, for multidimensional systems and

in particular for the compressible Euler equations of gas dynamics. Numerical results are

shown. We conclude in particular that for detailed features in the flow, such as the structure

near the triple Mach stem in the double Mach reflection problem, a higher order method

gives better cpu performance than a lower order one, to obtain the same resolution. We also

conclude that triangular elements and rectangular elements perform in a similar way.

References

[1] H.L. Atkins and C.-W. Shu, Quadrature-free implementation of discontinuous Galerkin

methods for hyperbolic equations, ICASE Report 96-51, 1996. Submitted to AIAA J.

[2] P. Bar-Yoseph, Space-time discontinuous finite element approximations for multi-

dimensional nonlinear hyperbolic systems, Comput. Mech., v5 (1989), pp.145-160.

29



0 5 10
0

1

2

3

4

5

6

7

8

9

10

11

12

P1, ∆x = ∆y = 1/10

0 5 10
0

1

2

3

4

5

6

7

8

9

10

11

12

P1, ∆x = ∆y = 1/20

0 5 10
0

1

2

3

4

5

6

7

8

9

10

11

12

P1, ∆x = ∆y = 1/40

0 5 10
0

1

2

3

4

5

6

7

8

9

10

11

12

P1, ∆x = ∆y = 1/80

Figure 4.9: Shock diffraction problem. Second order P 1 results. Density ρ. 20 equally spaced
contour lines from ρ = 0.066227 to ρ = 7.0668. Mesh refinement study. From top to bottom:
∆x = ∆y = 1

10
, 1

20
, 1

40
, and 1

80
.

30



0 5 10
0

1

2

3

4

5

6

7

8

9

10

11

12

P2, ∆x = ∆y = 1/10

0 5 10
0

1

2

3

4

5

6

7

8

9

10

11

12

P2, ∆x = ∆y = 1/20

0 5 10
0

1

2

3

4

5

6

7

8

9

10

11

12

P2, ∆x = ∆y = 1/40

0 5 10
0

1

2

3

4

5

6

7

8

9

10

11

12

P2, ∆x = ∆y = 1/80

Figure 4.10: Shock diffraction problem. Third order P 2 results. Density ρ. 20 equally spaced
contour lines from ρ = 0.066227 to ρ = 7.0668. Mesh refinement study. From top to bottom:
∆x = ∆y = 1

10
, 1

20
, 1

40
, and 1

80
.

31



[3] P. Bar-Yoseph and D. Elata, An efficient L2 Galerkin finite element method for multi-

dimensional nonlinear hyperbolic systems, Int. J. Numer. Meth. Engin., v29 (1990),

pp.1229-1245.

[4] F. Bassi and S. Rebay, High-order accurate discontinuous finite element solution of the

2D Euler equations, J. Comput. Phys., to appear.

[5] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for

the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys.,

to appear.

[6] S. Bazhenova, L. Gvozdeva and M. Nettleton, Unsteady interactions of shock waves,

Prog. Aerospace Sci., v21 (1984), pp.249-331.

[7] M. Berger and A. Colella, Local adaptive mesh refinement for shock hydrodynamics, J.

Comput. Phys., v82 (1989), pp.64-84.

[8] K.S. Bey and J.T. Oden, A Runge-Kutta discontinuous Galerkin finite element method

for high speed flows, AIAA 10-th Computational Fluid Dynamics Conference, Honolulu,

Hawaii, June 24–27, 1991.

[9] R. Biswas, K.D. Devine, and J. Flaherty, Parallel, adaptive finite element methods for

conservation laws, Applied Numerical Mathematics, v14 (1994), pp.255-283.

[10] G.F. Carey and J.T. Oden, Finite Elements: Computational Aspects, III, Prentice-Hall,

Inc., 1984.

[11] G. Chavent and B. Cockburn, The Local Projection P 0P 1-Discontinuous Galerkin Finite

Element Method for Scalar Conservation Laws, M2AN, v23 (1989), pp.565-592.

[12] P. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, 1975.

[13] B. Cockburn and C.W. Shu, The Runge-Kutta Local Projection P 1-Discontinuous

Galerkin Method for Scalar Conservation Laws, M2AN , v25 (1991), pp.337-361.

32



[14] B. Cockburn and C.W. Shu, TVB Runge-Kutta Local Projection Discontinuous Galerkin

Finite Element Method for Scalar Conservation Laws II: General Framework, Math.

Comp., v52 (1989), pp.411-435.

[15] B. Cockburn, S.Y. Lin and C.W. Shu, TVB Runge-Kutta Local Projection Discontinuous

Galerkin Finite Element Method for Conservation Laws III: One Dimensional Systems,

J. Comput. Phys., v84 (1989), pp.90-113.

[16] B. Cockburn, S. Hou, and C.W. Shu, TVB Runge-Kutta Local Projection Discontinuous

Galerkin Finite Element Method for Conservation Laws IV: The Multidimensional Case,

Math. Comp., v54 (1990), pp.545-581.

[17] B. Cockburn and C.W. Shu, The P 1-RKDG method for two-dimensional Euler equations

of gas dynamics, ICASE Report 91-32, 1991.

[18] B. Cockburn and C.W. Shu, The local discontinuous Galerkin method for time-dependent

convection diffusion systems, submitted to SIAM J. Numer. Anal.

[19] H.L. deCougny, K.D. Devine, J.E. Flaherty, R.M. Loy, C.Özturan, and M.S. Shephard,
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